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Preface

Very complex mathematical ideas are often derived from searching for the answers to the
questions that are easy to understand. The Riemann zeta function is one of these ideas. The
study on this function has arisen from a test related to the distribution of prime numbers [224].
They represent something simple and understandable to almost everyone, but what happens
when it comes to their distribution? Finding the next known prime number may seem simple
at first glance, but, in practice, it is not always the case. Mathematicians have been looking
for a general rule that will dictate the distribution of prime numbers of any size. This search
gradually led a mathematician Bernhard Riemann to use the complex function theory in order
to describe the distribution of prime numbers.

The Riemann zeta function plays a central role in many areas in which complex analysis
is applied, such as number theory (e.g. generating irrational and prime numbers) [220, 223,
224]. It is also an important tool in signal analysis in many fields of contemporary practice
and technology, cryptography. Historically [218, 231], over time, more attention was paid to
studying the closed form of the Riemann zeta function with positive integer arguments, since
such special values dictate the properties of the objects they are associated with. In condensed
matter physics, for example, the famous Sommerfeld expansion, which is used to calculate the
number of particles and the internal electron energy, includes the Riemann zeta function with
even integer argument values [129]. On the other hand, the spin-spin correlation function of
isotropic spin-1/2 in the Heisenberg model [221] is expressed by ln 2 and Riemann zeta function
with odd integer arguments [202, 205].

Moreover, the calculation of the Riemann zeta function and related series is of relevant
importance in computer mathematics [214, 222, 226, 230], with the use of the most advanced
software tools such as the Mathematica software package. Although traditional methods are
based on the Euler-Maclaurin and Riemann-Siegel formulas, new techniques and algorithms
are constantly being developed [211, 225, 227, 229]. In practice, it is typical for a particular
numerical method to be limited to a specific domain. Therefore, when concentrating on the
Riemann zeta function with odd integer arguments, a special method should be developed to
establish a connection between the values of the Riemann zeta function with odd and even integer
arguments. It is precisely the methods and techniques that have been described and developed
in the monograph that offer such an approach and hopefully provide a clear direction towards
new results in this field.

The monograph was created as a result of the decades of work of Professor Milorad Stevanović
on the study of the Riemann ζ function and its application to calculations of various sums and
integrals, which can find application in various fields of science and technology [198, 202]. This
more than demanding area of complex analysis has prompted the authors to define and prove the
features of this function. The necessity of addressing this task has been supported by numerous
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studies conducted by different authors over the period longer than 200 years. Therefore, the first
3 chapters are devoted to this topic. The authors have made a tremendous effort to provide the
reader with a new, clear and innovative way of looking at the most important features of the
Riemann ζ function. The proofs of the expressed theorems are completely original. These first
chapters have also established a good theoretical basis for the subsequent chapters in which the
focus of the research is directed towards the problem of calculating multiple sums. The first 2
chapters of the monograph provide an overview of the latest results on the ζ(s) function while
the next 3 chapters present the original contribution of the authors, related to determining the
values of integrals and sums in which the Riemann function appears.

The first problem that is dealt with in detail refers to calculating the coefficients of the form
F(p,q)(−1), G(p,q)(1), G(p,q)(−1), H(p,q)(−1). The significance of this problem, which was first
observed by Euler and Goldbach, is that it refers to the coefficients that are the values of the
basic multiple sums of order 2, at the points −1, 1. Some of the multiple sums of order 2, are
observed at the point z = i. The methods of decomposing expressions into partial fractions, into
degrees, by the summation by specially defined subsets of the indices m, n, are used in order to
obtain the corresponding functional equations, in the region |z| � 1 and especially at |z| = 1.
Such an approach is completely unique, as well as the techniques used to obtain the required
results, which are therefore completely original. The functions F(p,q)(x), G(p,q)(x), H(p,q)(x) for
|x| � 1 have been derived in order to establish various functional relations between them and
specially, the relations for x = −1, 1. Based on the procedure that has been conducted in the
monograph, one can conclude that the results are obtained independently of the results achieved
by Nielsen and that they are more general when compared to them. In addition, some special
cases of the above mentioned coefficients, which in this form have not existed in the professional
mathematical literature, are provided.

For example, for the coefficients mentioned above the solution has been found when p + q
is an odd number (Chapter 4). Moreover, some special cases of the above coefficients, when
p+ q is even number, are also provided in the monograph. In addition, certain relations that are
inverses of each other are established. All 16 ωj(p, q) coefficient values have been calculated, 10
of them when p+ q = 2k + 1 and 6 when p+ q = 2k. At the end of that chapter, the formulas
are presented for:

∞∑
n=1

(−1)n
nr

(
1 +

1

2
+ · · ·+ 1

n
− log n

)

for r = 1 and for r = 2k. Among other things, the value of the sum:

∞∑
n=1

1

nr

(
1 +

1

2
+ · · ·+ 1

n
− log n

)
,

has been defined, providing the generalization of one of the Hardy ’s formulas from the 20s of XX
century. The analysis of these sums has also led to some innovative and interesting combinatorial
formulas. What remains as an open problem, after the results have been obtained, refers to the
cases complementary to the solved ones.

Chapter 5 presents the integration of the function f(z) = log2(1−z)
z along the appropriate

contour, in order to obtain certain generator relations for multiple summation. These generator
relations are very suitable for successive differentiation and integration. The summation formulas
have been obtained in which ζ(3) and G-Catalan constant appear, while based on the determined

ii



value for G(2k,1)(−1) (in Chapter 4) the relation has been obtained for:
∞∑

m=1

cosmα

m2k

∞∑
n=1

1

n
, 0 � α � π,

and then the formula for α = π
3 . It has been proven that with the application of purely com-

binatorial considerations, triple sums can be reduced to double sums. Some of the formulas are
just listed without proof, when the authors were aware of the possibilities and generalizations.
The contour integration method has been used in this chapter, combined with the method of
applying various combinatorial relations. From the basic triple sums in the following form:

∞∑
m=1

∞∑
n=1

∞∑
p=1

(−1)λm+μn+νp

mnp(m+ n+ p)
, λ, μ, ν ∈ {0, 1}

the formulas have been obtained for all four possible sums (possible values of the parameters
λ, μ, ν). These sums are directly related to the integrals:

1∫
0

log3(1− x)

x
dx,

1∫
0

log3(1 + x)

x
dx

so that their values can be determined based on the formulas already obtained in Chapter 4.
The formulas for all the sums in the form of:

∞∑
m=1

λm

m2

∞∑
n=1

un

n

∞∑
p=1

νp

p
, λ, u, ν ∈ {−1, 1}

have also been obtained. Various combinatorial sums and the results from Chapter 4 have been
used in the calculation of these sums. Finally, in Chapter 5, the multiple sums:

∞∑
m=1

∞∑
n=1

∞∑
p=1

1

mnp(m+ n+ p)3
,

∞∑
m=1

1

ma

∞∑
n=1

1

nb

∞∑
p=1

1

p

for (a, b) = (3, 1) and for (a, b) = (2, 2) have also been calculated. The problems that remain
open are the following:

1) To derive the formula for the sum:

∞∑
m=1

λm

ma

∞∑
n=1

μn

nb

∞∑
p=1

νp

pc
, λ, μ, ν ∈ {−1, 1}

in the case when a+ b+ c = 2k and in the case when a+ b+ c = 2k + 1.

2) To derive the formula for the sum:

∞∑
m=1

∞∑
n=1

∞∑
p=1

(−1)λm+μn+νp

manbpc(m+ n+ p)d
, λ, μ, ν ∈ {0, 1}

in the case when a+ b+ c+ d = 2k and in the case when a+ b+ c+ d = 2k + 1.
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While analyzing the aforementioned problems, one of the basic problems when working with
multiple sums has also been tackled: how to express the sums of s multiplicity over the sums of r
multiplicity (r � s−1). The monograph offers some partial results without providing a complete
answer to this question. The values of the Riemann ζ function appear in all of the obtained
results. In some formulas, the expressions of the type βr(−1) and G(2,2)(−1) also appear. It is
natural to expect that when β2r(−1) does not already have a formula that allows the calculations
over already known values, among the sums whose multiplicity is 2, there is also the value with
such characteristic. However, the obtained results provide the basis, in various expressions given
over G(2,2)(−1), for the opposite opinion as well. This opens the problem of determining the
base set of elements for the sums of corresponding multiplicity.

Chapter 5 discusses the Mordell sums of the following form:

Sn =
∞∑
r=1

∞∑
s=1

1

rnsn(r + s)n
, n ∈ N

For n = 2k, the above formula was obtained by Subbarao and Sitaramachandrarao in 1985.
The formula for S2k+1 has been generally unknown so far, while for S1 the formula was familiar
even to Euler. Based on some of the basic results cited in the first chapters of the monograph,
the authors have come up with the formulas for S3 and S5. Based on the results and formulas
derived in Chapter 4, the formula for each S2k+1 has been obtained, and the formula for Sn has
also been provided. In relation to the result of L. Tornheim: “S2k+1 is a polynomial of ζ2(1),
ζ3(1), . . . , ζ6k+3(1) with rational coefficients”, it can be deduced from the derived relations for
S2k+1 that S2k+1 is a 2nd degree polynomial in relation to ζ2(1), ζ3(1), . . . , ζ6k+3(1) with integers.
In this chapter, the sum:

W (m,n, p) =
∞∑
r=1

∞∑
s=1

(−1)λr+μs

rmsn(r + s)p
, λ, μ ∈ {0, 1} , m+ n+ p = 2k + 1

has also been calculated, giving a generalization of the Mordell sums and sums similar to them.
In order to obtain the above results, the method of calculating finite combinatorial sums and
method of their double summation have been used. In all the cases, complementary sums appear
which have enabled us to obtain elegant analytical expressions.

The following Chapter 6 of the monograph is devoted to the double sums of the following
form:

∞∑
m=1

λm

rα

m∑
n=1

μn

sb
, a+ b = 4, λ, μ ∈ {−1, 1} , r ∈ {m, 2m− 1} , s ∈ {n, 2n− 1} .

In total, there are 40 of these sums and they are of the same form as those considered in
Chapter 4. The need to determine these sums lies in the fact that they represent the first non-
trivial case in which p+ q = 2k. Not all the formulas are derived, while in addition to the ones
that have been obtained, the relations between some of the given sums have been established.
It can be noticed that β4(−1) and G(2,2)(−1) appear in the expressions representing the corre-
sponding sums. The following question naturally arises: what is the relation between β4(−1) and
G(2,2)(−1)? The formulas derived have been obtained by multiplying specially selected degree
series and combining the corresponding double sums with certain products.

Chapter 6 presents various functional relations in the region: −1 � x � 1, or in one of
its sub-regions. The starting point for deriving these functions was the Spencer relation [17],
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which defines the expression for ζ3
(

x
x−1
)
in the region 0 � x � 1

2 . The resulting expressions for

G(2,1) (x), G(1,2) (x) in the region 0 � x � 1
2 are simple examples that illustrate this. For the

same functions we also have corresponding decompositions in the regions 0 � x � 1, 0 � x < 1.
This is followed by the formulas for the integrals of the following form:

x∫
0

logk(1− t)

t
dt,

x∫
0

logk(1 + t)

t
dt, k = 1, 2, 3

in various regions, with decompositions of the functionsG(2,2) (x), G(3,1) (x) in the region 0 � x �
1
2 . For ζk

(
1
2

)
the formulas for k = 1, 2, 3 are known. The relations between ζ4

(
1
2

)
and G(2,2) (−1)

are presented. This provides the basis for the claim that G(2,2) (−1) can be expressed over log4 2,
ζ2 (1) log

2 2, ζ3 (1) log 2 and ζ4 (1). This is supported by the formulas for some integrals, in
which G(2,2) (−1) appears. The values for the expression G(p,q)

(
1
2

)
have been calculated, when

p+ q = 4. For the following functions (given by triple sums):

G(a,b,c) (x) =
∞∑

m=1

xm

ma

m∑
n=1

1

nb

n∑
p=1

1

pc
, a+ b+ c = 4

the formulas in the region −1 � x � 1
2 have been obtained, as well as the following formulas:

G(2,1,1) (x) = −G(1,3)

(
x

x− 1

)
, G(1,2,1) (x) = −G(2,2)

(
x

x− 1

)

G(1,1,2) (x) = −G(3,1)

(
x

x− 1

)
, −1 � x � 1

2
.

The following formula is true in the same region:

G(1,1,...,1)r
(x) = −ζr

(
x

x− 1

)
, r � 2.

Furthermore, in Chapter 6, for the functions:

Fr (x) =
∞∑

k1=1

xk1

k1

k1∑
k2=1

xk2

k2
· · ·

kr−1∑
kr=1

xkr

kr
, r � 2,

F0 (x) = 1, F1 (x) = ζ1(x), −1 � x < 1,

one functional and, as a consequence, one recurrent relation have been obtained. The values of
Fr (x) have been specified when r = 0, 1, . . . , 6. The problem remains to determine the formula
for ζk(12), k � 4 (if we do not think that the derived formula is true when k = 4). The results
reported in this chapter have been obtained by combining the combinatorial summation method
and multiple summation methods and using various functional relations for the functions given
either through multiple sums or by integrals. The method used for proving the functional relation
for Fr(x) could be named the “entry-exit” method for multiple sums.

Based on the results obtained by H. M. Srivastava in his study from 1988, related to several
different groups of summation formulas with the series in which the Riemann zeta function
appears (which was first investigated by Euler and Goldbach), in Chapter 7 of the monograph
the authors have dealt with the series of this type. For each of the formulas listed in the
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introduction to this chapter, a formula is given that generalizes the result and that is valid for
the natural number n. The generalizations are related to the following sums (for which the
appropriate formulas are indicated):

∞∑
k=1

ζ(2k)− 1

k + n
, n � 1,

∞∑
k=1

ζ(2k)

k(2k + n)
, n � 1,

∞∑
k=2

(−1)k ζ(k)− 1

k + n
, n � 1,

∞∑
k=1

ζ(2k)− 1

2k + 2n+ 1)
, n � 0,

∞∑
k=1

ζ(2k + 1)− 1

k + n
, n � 1,

∞∑
k=2

(−1)k ζ(k)

2k(k + n)
, n � 1.

The problem that remains open refers to the calculation of the following sum:
∞∑
k=2

(−1)k ζ(k)− 1

(k + n)r
, r � 2, r, n ∈ N.

In order to obtain the results, the authors used the method of integrating the function which
is the product of the polynomial and log Γ(x), where for log Γ(x) the corresponding Kumer series
in the region 0 < x < 1 is used. Common to all the problems discussed in the monograph is
that all of the multiple sums and integrals are expressed over the Riemann zeta function. While
this presents only a tiny fraction of what can be calculated, it certainly is one of the irrefutable
proofs that this function is of exceptional importance in the theory of multiple series summation.

The following notation was used throughout the text of the monograph: for positive A, label
B = O(A) (which is the same as B � A) indicates that there is an absolute positive constant
c so that |B| ≤ cA. In addition, everywhere throughout the monograph log was used instead of
ln. In the sums by nontrivial zeros of the ζ(s) function, the zeros are numbered in order of the
absolute magnitudes of their imaginary parts, and if the absolute values of the imaginary parts
are the same, then the order is arbitrary.

Finally, the sad fact is that Professor Stevanović died in 2010 which faced the co-author,
who was his close associate and colleague, with a huge and at times hard-to-overcome problem
how to adequately describe and expand the results that professor Stevanović achieved during his
extremely fruitful life. The co-author can only hope that his effort and desire have resulted in a
high-quality work and that the monograph in the form in which it is now will find its way to a
professional reading audience.

The reviewers, Professor Dragomir Simeunović and Professor Milan Tasković, with their
extensive knowledge and experience, as well as well-meaning suggestions, have provided tremen-
dous help and support in the process of preparing the monograph, for which we are very much
obliged.

This text would have probably never seen the light of day that it hadn’t been for the wife of
Professor Stevanović, Vera, who prepared a huge piece of material which had been in the form of
handwritten notes for further revision and computer processing. Mladen Janjić, a late professor’s
student, did the fracture and prepared the monograph for printing, which is why we would like
to express our sincere gratitude to him.

Furthermore, the authors would like to thank Lena Tica for proofreading and editing the
English version of the manuscript.
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Notation

Owing to the nature of this text, absolute consistency in notation could not be attained,
although whenever possible standard notation is used. Notation used commonly through the
text is explained there, while specific notation introduced in the proof of a theorem or lemma is
given at the proper place in the body of the text.

k, l,m, n, . . . – Natural numbers (positive integers).

p – A generic prime number.

N, Z, R, C – The sets of natural numbers, integers, real and complex numbers, respectively.

A,B,C,C1, . . . – Absolute, positive constants (not necessarily the same ones at each occurrence).

ε – An arbitrarily small positive number, not necessarily the same one at each occurrence.

s, z, w – Complex variables (Re s and Im s denote the real and imaginary part of s, respectively;
common notation is σ = Re s and t = Im s).

t, x, y – Real variables.

res
s=s0

F (s) – Denotes the residue of F (s) at the point s = s0.

ζ(s) – The Riemann zeta-function is defined with ζ (s) =
∞∑
n=1

n−s for Re s > 1 and otherwise by

analytic continuation.

Γ(s) =

∞∫
0

xs−1e−x dx for Re s > 0, otherwise by analytic continuation by sΓ (s) = Γ (s+ 1).

This is the Euler gamma-function.

γ – Euler’s constant γ = −Γ′ (1) = 0.5772157 . . .

χ (s) – The function defined by ζ(s) = χ(s)ζ(1− s), so that by the functional equation for ζ(s)

we have χ(s) =
(2π)s

2Γ(s) cos(πs2 )
.

θ(t) – For real t defined as θ(t) = Im
{
log Γ(14 + 1

2 it)
}− 1

2 t log π.

ρ = β + iγ – A complex zero of ζ(s); β = Re ρ, γ = Im ρ.
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N(T ) – The number of zeros ρ = β+ iγ of ζ(s), counted with multiplicities, for which 0 < γ ≤ T .

N(σ, T ) – The number of zeros ρ of ζ (s) for which β ≥ σ, |γ| ≤ T .

S(T ) = 1
π arg ζ

(
1
2 + iT

)
.

μ(σ) – For real σ defined as μ(σ) = lim sup
t→∞

log |ζ (σ + it)|
log t

. The Mobius function, defined as

μ(n) = (−1) k if n = p1 · · · pk (the p′js being different primes) and zero otherwise, and
μ(1) = 1.

exp(z) = ez.

e(z) = e2πiz.

log x = loge x ≡ lnx.

[x] – The greatest integer not exceeding the real number x.

{x} = x− [x], the fractional part of x.
∑
n≤x

f (n) – A sum taken over all natural numbers n not exceeding x; the empty sum is defined

to be equal to zero.
∑
d|n
– A sum taken over all positive divisors of n.

Λk(n) – The generalized von Mangoldt function defined by Λk(n) =
∑
d|n

μ(d)
(
log n

d

)k;
Λ1 (n) = Λ (n), the ordinary von Mangoldt function.

∏
j
– The product taken over all possible values of the index j; the empty product is defined to

be unity.

ψ (x) – Equals x− [x]− 1
2 , or ψ (z) =

Γ′(z)
Γ(z)

.

ψk (x) =
∑
n≤x

Λk (n).

π (x) =
∑
p≤x

1, the number of primes not exceeding x.

θ (x) =
∑
p≤x

log p.

M (x) =
∑
n≤x

μ (x).

r (n) – The number of ways n can be written as a sum of two integer squares.

dk(n) – The number of ways n can be written as a product of k ≥ 2 fixed factors; d2(n) = d(n)
is the number of divisors of n.
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